田浦 学
論文審査の要旨

論文題目 自然免疫制御機構におけるガン抑制遺伝子p53の機能解明とそのガン治療への応用
～転写因子MEFと病原微生物認識受容体PRRの発現制御に関して～

ガン抑制遺伝子p53に関する研究が、ガンだけでなく、老化・加齢、代謝、免疫系など、多くの生命現象におけるp53の新たな機能解明へと変遷してきている現状に対して、本研究は、自然免疫制御機構におけるp53の機能的役割を解明することを企図したものであり、以下の知見を得た。

1) 自然免疫系を制御する転写因子であるMEFの発現制御に対するp53の影響を検討した結果、p53欠損ヒト細胞において、MEFの発現が有意に増加すること、一方、p53過剰発現と内因性p53活性化によって低下すること、さらに、p53は、MEFの転写活性化因子として新たに同定した転写因子E2F1を抑制し、MEFの発現を間接的に抑制することを明らかにした。

2) ウイルスなどの病原微生物の感染認識を担い、感染細胞のアポトーシス誘導に大きく寄与する病原微生物認識受容体（PRR）の発現および機能制御に対するp53の影響を検討した結果、p53欠損ヒト細胞においては、ウイルス構成成分である2本鎖RNAを認識する受容体Toll-like receptor3（TLR3）の発現量および下流シグナルの顕著に抑制されること、p53はTLR3プロモーター上の特異的p53応答配列に直接結合し、転写活性化を介してTLR3遺伝子発現を誘導すること、さらにp53は、TLR3発現制御を介して、抗ウイルス免疫を担うインターフェロン-βの発現を正に制御することを明らかにし、この現象は、p53ノックアウトマウスにおいても確認した。

3) p53によるTLR3発現制御機構を応用した新規ガン治療法の開発を目的に種々検討した結果、TLR3発現上昇作用を基盤とした3剤併用療法（5-FU、IFN-α、poly (I:C))が、ガン化学療法に対する耐性原因の1つとされるp53変異の有無に関わらず、高い抗ガン活性とガン細胞選択性を有することを明らかにした。

以上、本研究は、p53を標的にした自然免疫制御剤の開発およびガン治療法の開発に貢献できる重要な知見であり、博士の学位論文として十分価値あるものと判定した。

審査委員　遺伝子機能応用学分野　教授　甲斐　広文
審査委員　生殖発生分野　教授　山田　源
審査委員　薬学生化学分野　教授　杉本　幸彦
試験結果の要旨

<table>
<thead>
<tr>
<th>報告番号</th>
<th>甲第</th>
<th>氏名</th>
<th>田浦学</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>職名 氏名</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>教授 甲斐 広文</td>
<td>印</td>
<td></td>
</tr>
<tr>
<td>試験担当者</td>
<td>教授 山田 源</td>
<td>印</td>
<td></td>
</tr>
<tr>
<td></td>
<td>教授 杉本 幸彦</td>
<td>印</td>
<td></td>
</tr>
</tbody>
</table>

(成績)
合格・不合格

(試験の結果の報告)
試験担当者全員は，田浦学に対し，学位論文の内容及ぶその関連する分野について，種々諮問を行った結果，上記成績のとおり判定した。